Spring School 2013
Erasmus Mundus Euro photonics
Karlsruhe School of Optics & Photonics (KSOP)

April 08, 2013
Cerebral blood flow evolution in MBL-KO mice after reperfusion following temporal ischemia

Claudia Valdés¹, Anna Kristoffersen¹, Xavier De La Rosa Siles²,³, Carles Justicia²,³, Anna Planas²,³, Turgut Durduran¹
Stroke is a non static disease
Reperfusion could generate injury

- Reperfusion
- Inflammation
- I/R Injury
- Immune system
- Complement system

- Pro-inflammatory
- Pro-coagulatory
Mannose-Binding Lectin

previous results

Humans
Stroke patients with MBL-low genotypes have 11 times better outcome than MBL-sufficient genotypes

Animal Models
MBL deficiency is beneficial in experimental brain ischemia.

Infarct volume in MBL knock-out (KO) mice is smaller at 48 hours following ischemia compared to wild type (WT) mice.

Cervera et al, PLoS ONE, 2010
Infarct volume size is smaller in MBL-KO than in WT mice

Cervera et al, PLoS ONE, 2010
Laser Speckle Flowmetry
Moving particles create dynamic speckle patterns

Speckle pattern on a CCD
Exposure time 1 – 10 ms
Increased blood flow areas, more blurred

Laser speckle statistics allows quantifying flow

\[K_s = \frac{\sigma_s}{\langle I \rangle} \]

\(\sigma_s \rightarrow \) Spatial standard deviation of speckle intensity

\(0 \leq K \leq 1 \)

Speckle contrast is related to flow

\[
K = \sqrt{\beta \left(\frac{\tau_c}{T} + \frac{\tau_c^2}{2T^2} \left[\exp\left(-\frac{2T}{\tau_c}\right) - 1 \right] \right)}
\]

- \(\beta \): Instrument parameter
- \(T \): Exposure time
- \(\tau_c \): Inversely proportional to a measure of the speed and # of moving scattering particles

\[\tau_c \propto \frac{1}{BF} \]

Funded by Fundació Cellex Barcelona, Marie Curie IRG (FP7, RPTAMON), Institute de Salud Carlos III (DOMMON, FIS), Ministerio de Ciencia e Innovación (MICINN), Institució CERCA (DOCNEURO), Generalitat de Catalunya, European Regional Development Fund (FEDER/ERDF) and LASERLAB (FP7) and Photonics4Life (FP7) consortia.

Europhotonics joint PhD project with Dr. Anabela Da Silva at Institute Fresnel